Georgia Power

Plant Bowen

Prepared by:

Monthly Dewatering Results¹

October 2024

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	1.10	1.30	***	***	***	
рН	SU	6.7	***	8.2	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	ND	ND	ND	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	ND	15.0	20.0	

Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Daily
		Sampled in September	10/7/2024	10/14/2024	10/22/2024	No Discharge	Average
Turbidity ⁴	NTU		2.3	1.7	1.2		1.7
Total Residual Chlorine ⁴	mg/L		ND	ND	ND		ND
Total Dissolved Solids	mg/L		1390	1270	1370		1343
Ammonia	mg/L		ND	ND	ND		ND
Total Kjeldahl Nitrogen	mg/L		ND	ND	0.72		0.24
Nitrate-Nitrite	mg/L		0.11	ND	ND		0.04
Organic Nitrogen	mg/L		ND	ND	0.65		0.22
Phosphorus	mg/L		ND	0.09	ND		0.03
Ortho-Phosphorus	mg/L		ND	ND	ND		ND
Biological Oxygen Demand	mg/L		ND	ND	ND		ND
Hardness	mg/L		967	958	878		934

Efflu				ent Concentration⁵			Calculated Receiving Water Concentration ⁵					Water Quality Criteria ⁶		
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5			
		Sampled in September	10/7/2024	10/14/2024	10/22/2024	No Discharge	Sampled in September	10/7/2024	10/14/2024	10/22/2024	No Discharge	Average	Acute ⁷	Chronic ⁷
Antimony ⁹	μg/L		ND	ND	ND			***	***	***		***	***	640
Arsenic	μg/L		10.2	6.0	5.8			0.0825	0.0485	0.0469		0.0593	340	150
Cadmium	μg/L		ND	ND	ND			***	***	***		***	0.94	0.43
Chromium ⁸	μg/L		ND	ND	ND			***	***	***		***	16	11
Copper	μg/L		ND	ND	ND			***	***	***		***	7	5
Lead	μg/L		ND	ND	ND			***	***	***		***	30	1.2
Nickel	μg/L		ND	ND	ND			***	***	***		***	260	29
Selenium ⁹	μg/L		104.0	88.8	104.0			0.8415	0.7185	0.8415		0.8005	***	5
Thallium ⁹	μg/L		1.4	1.2	1.1			0.0113	0.0097	0.0089		0.0100	***	0.47
Zinc	μg/L		ND	ND	ND			***	***	***		***	65	65
Mercury	ng/L		1.3	0.9	0.8			0.0108	0.0070	0.0061		0.0080	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Ayg is the arithmetic average of all daily values during the entire month.
ND = Not Detected (below the lab's reporting limit).
Turbidity and total residual choine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration.
Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated as calculated translated into Calculated Receiving Water Concentrations for a parameter (calculated at a disculated receiving waterbody.
Accute (chort-term) water quality criteria is the maximum concentration of a parameter (calculated are concentration), ac acalcum controation contable setablishers for the receiving waterbody.
Accute (chort-term) water quality criteria is the maximum concentration or the weekly calculated receiving water concentration.
Numeric water quality criteria shown are the choroic (long-term) water quality criterion to be compared with the weekly calculated receiving water concentration.
The numeric water quality criteria shown are the choroic (long-term) water quality criterion to have an acute (short-term) water quality criterion.
The numeric water quality criteria shown are the choroic (long-term) water quality criteria on the awarge calculated receiving water concentration and the specifies are parameters do not have an acute (short-term) water quality criterion.
The numeri

Plant Bowen

Prepared by:

Monthly Instream Results¹

October 2024

		Etowah River ²							
Parameter ³	Units	10/7/2024	10/7/2024	10/14/2024	10/14/2024				
		Upstream	Downstream	Upstream	Downstream				
pН	SU	6.9	7.0	7.4	7.4				
TSS	mg/L	ND^4	ND	ND	ND				
O&G	mg/L	ND	ND	ND	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	7.1	6.8	3.8	3.8				
TDS	mg/L	184	67	90	148				
BOD	mg/L	ND	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	1.8	2.1	1.8	4.6				
Nickel	μg/L	9.3	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	ND	ND				
TKN	mg/L	ND	ND	ND	ND				
Nitrate-Nitrite	mg/L	0.52	0.49	0.65	0.69				
Organic Nitrogen	mg/L	ND	ND	ND	ND				
Phosphorus	mg/L	ND	ND	ND	0.07				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	37	35	52	106				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Etowah River measured 1000ft upstream and 1000ft downstream of the Final Plant Discharge (Outfall 001)

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; μg/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day