Georgia Power

Plant Scherer

Prepared by:

Æ TETRA TECH

Monthly Dewatering Results¹

July 2024

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	4.58	4.95	***	***	***	
рН	SU	7.4	***	8.1	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	ND	ND	ND	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	ND	15.0	20.0	

Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Daily
Farameter		7/1/2024	7/9/2024	7/18/2024	7/23/2024	Sampled in August	Average
Turbidity ⁴	NTU	3.4	5.6	5.7	2.9		4.4
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND		ND
Total Dissolved Solids	mg/L	607	610	620	651		622
Ammonia	mg/L	ND	ND	ND	ND		ND
Total Kjeldahl Nitrogen	mg/L	ND	ND	ND	ND		ND
Nitrate-Nitrite	mg/L	ND	ND	ND	ND		ND
Organic Nitrogen	mg/L	ND	ND	ND	ND		ND
Phosphorus	mg/L	ND	ND	ND	ND		ND
Ortho-Phosphorus	mg/L	ND	ND	ND	ND		ND
Biological Oxygen Demand	mg/L	ND	ND	ND	ND		ND
Hardness	mg/L	60	59	60	32		53

Effluent Concentration ⁵				Calculated Receiving Water Concentration ⁵					Water Quality Criteria ⁶						
Parameter	eter Units	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5			
		7/1/2024	7/9/2024	7/18/2024	7/23/2024	Sampled in August	7/1/2024	7/9/2024	7/18/2024	7/23/2024	Sampled in August	Average	Acute ⁷	Chronic ⁷	
Antimony ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	640	
Arsenic	μg/L	ND	ND	ND	ND		***	***	***	***		***	340	150	
Cadmium	μg/L	ND	ND	ND	ND		***	***	***	***		***	1.09	0.16	
Chromium ⁸	μg/L	ND	ND	ND	ND		***	***	***	***		***	16	11	
Copper	μg/L	ND	ND	ND	ND		***	***	***	***		***	7	5	
Lead	μg/L	ND	ND	ND	ND		***	***	***	***		***	32	1	
Nickel	μg/L	ND	5.0	ND	5.6		***	0.1611	***	0.1805		0.0854	274	30	
Selenium ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	5	
Thallium ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	0.47	
Zinc	μg/L	ND	ND	ND	ND		***	***	***	***		***	68	69	
Mercury	ng/L	ND	ND	ND	ND		***	***	***	***		***	1400	12	

2 3 4 5

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards. Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Arg is the arithmetic average of all daily values during the entire month. ND = Not Detected (below the lab's reporting limit). Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations on propriate comparison to the numeric water quality criteria, Calculated Receiving Water Concentration of a parameter (calculated at a default hardness of 50 mg). As calculant calculated Receiving waterbody. Their solue is calculated receiving waterbody that will be protective of the designated use per Georgia EPD's nues and regulations. Calculated Receiving Water Concentrations are are protective of the waterbody. Acute (short-term) water quality criterion to be compared with the weekly calculated receiving water concentration. Chronic (long-term) water quality criterion to be compared with the average calculated Receiving water concentration. Mumeric water quality criterion is the disovated form. The numeric water quality criterion shows in 6 for texasuration thom. 6

and regulations. Catocateurs recommends -7 Acute (short-term) water quality criterion shown is for Hexavalent Chromium. 8 Numeric water quality criterion shown is for Hexavalent Chromium. 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) • "The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony. The numeric short do not have an acu

Plant Scherer

Prepared by:

Monthly Instream Results¹

July 2024

		Ocmulgee River ²							
Parameter ³	Units	7/1/2024	7/1/2024	7/9/2024	7/9/2024				
		Upstream	Downstream	Upstream	Downstream				
рН	SU	6.9	7.1	7.2	7.3				
TSS	mg/L	9.4	5.4	10.8	8.0				
O&G	mg/L	ND^4	ND	ND	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	11.0	14.1	9.6	11.4				
TDS	mg/L	88	82	80	78				
BOD	mg/L	ND	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	1.5	0.7	0.8	1.0				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	0.17	ND				
TKN	mg/L	ND	ND	ND	ND				
Nitrate-Nitrite	mg/L	0.37	0.38	0.45	0.45				
Organic Nitrogen	mg/L	ND	ND	ND	ND				
Phosphorus	mg/L	ND	ND	ND	ND				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	27	25	31	30				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Ocmulgee River measured 1000ft upstream and 1000ft downstream of the Final Plant Discharge (Outfall 001)

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

