Georgia Power

Plant Scherer

Prepared by:

TŁ TETRA TECH

Monthly Dewatering Results¹

September 2024

		Efflu	ent Concent	ration	Permit Limits			
Parameter	Units	Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	1.73	2.98	***	***	***	
рН	SU	7.0	***	8.0	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	ND	ND	ND	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	ND	15.0	20.0	

Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Daily Average	
Farameter	Onits	9/3/2024	9/10/2024	9/17/2024	9/24/2024	Sampled in October		
Turbidity ⁴	NTU	5.5	7.2	7.0	5.7		6.3	
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND		ND	
Total Dissolved Solids	mg/L	658	646	648	670		656	
Ammonia	mg/L	ND	ND	ND	ND		ND	
Total Kjeldahl Nitrogen	mg/L	ND	ND	0.67	0.74		0.35	
Nitrate-Nitrite	mg/L	ND	ND	ND	ND		ND	
Organic Nitrogen	mg/L	ND	ND	0.67	0.74		0.35	
Phosphorus	mg/L	ND	ND	ND	ND		ND	
Ortho-Phosphorus	mg/L	ND	ND	ND	ND		ND	
Biological Oxygen Demand	mg/L	ND	ND	ND	ND		ND	
Hardness	mg/L	64	65	62	67		64	

Effluent Concentration ⁵				Calculated Receiving Water Concentration⁵						Water Quality Criteria ⁶				
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	Acute ⁷	Chronic ⁷
		9/3/2024	9/10/2024	9/17/2024	9/24/2024	Sampled in October	9/3/2024	9/10/2024	9/17/2024	9/24/2024	Sampled in October			
Antimony ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	640
Arsenic	μg/L	ND	ND	ND	2.0		***	***	***	0.0399		0.0100	340	150
Cadmium	μg/L	ND	ND	ND	ND		***	***	***	***		***	1.09	0.16
Chromium ⁸	μg/L	ND	ND	ND	ND		***	***	***	***		***	16	11
Copper	μg/L	ND	ND	ND	2.3		***	***	***	0.0460		0.0115	7	5
Lead	μg/L	ND	ND	ND	ND		***	***	***	***		***	32	1
Nickel	μg/L	5.1	ND	5.0	5.8		0.1002	***	0.0983	0.1132		0.0779	274	30
Selenium ⁹	μg/L	7.5	7.8	9.0	5.9		0.1474	0.1533	0.1769	0.1167		0.1486	***	5
Thallium9	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	0.47
Zinc	μg/L	ND	ND	ND	ND		***	***	***	***		***	68	69
Mercury	ng/L	2.6	3.3	4.0	3.4		0.0503	0.0651	0.0780	0.0676		0.0653	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Arg is the antitmetic average of all daily values during the entire month.
NO = Not Deteiced (below the lab's reporting limit).
Turbidity and lotal residual choine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
Calculated Receiving Vater Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations is the maximum concentration of a parameter (calculated at a dissolved form. Consistent with Georgia EPD's nules and regulations. Calculated Receiving Water Concentrations is the stander deceiving water concentration.
Numeric Water Quality Criterina is the maximum concentration of a parameter (calculated at ceciving water concentration.)
Acute (short-term) water quality criterion is to ensure water quality criterion is to ensure concentration.
Numeric water quality criterion shown are the chronic (long-term) water quality criterion to be compared with the weekly calculated receiving water concentration.
Numeric water quality criterion shown are the chronic (long-term) water quality criterion to be compared with the weekly calculated receiving water concentration.
Numeric water quality criterion shown are the chronic (long-term) water quality criterion shown is for Hexavalent Ch

Plant Scherer

Prepared by:

Monthly Instream Results¹

TETRA TECH

September 2024

		Ocmulgee River ²							
Parameter ³	Units	9/3/2024	9/3/2024	9/10/2024	9/10/2024				
		Upstream	Downstream	Upstream	Downstream				
рН	SU	6.9	6.9	7.0	7.0				
TSS	mg/L	ND^4	20.0	29.5	ND				
O&G	mg/L	ND	ND	ND	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	4.9	14.5	17.8	2.9				
TDS	mg/L	65	64	74	75				
BOD	mg/L	ND	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	1.3	1.7	3.1	0.9				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	ND	ND				
TKN	mg/L	ND	2.20	ND	ND				
Nitrate-Nitrite	mg/L	0.32	0.33	0.24	0.24				
Organic Nitrogen	mg/L	ND	2.20	ND	ND				
Phosphorus	mg/L	ND	ND	ND	ND				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	27	29	28	28				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Ocmulgee River measured 1000ft upstream and 1000ft downstream of the Final Plant Discharge (Outfall 001)

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; μg/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day