

Georgia Power

Plant Scherer

Monthly Dewatering Results¹

November 2024

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	4.65	5.24	***	***	***	
pН	SU	7.0	***	7.8	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	3.6	8.4	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

Parameter	Units		Daily			
Farameter	Uiills	Week 1	Week 2	Week 3	Week 4	Average
		11/5/2024	11/12/2024	11/19/2024	11/26/2024	
Turbidity ⁴	NTU	5.1	7.2	8.8	3.9	6.2
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND	ND
Total Dissolved Solids	mg/L	670	666	674	625	659
Ammonia	mg/L	ND	ND	0.10	ND	0.03
Total Kjeldahl Nitrogen	mg/L	0.74	0.68	1.10	0.90	0.86
Nitrate-Nitrite	mg/L	ND	ND	ND	ND	ND
Organic Nitrogen	mg/L	0.74	0.67	0.98	0.82	0.80
Phosphorus	mg/L	ND	ND	ND	ND	ND
Ortho-Phosphorus	mg/L	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	ND	ND	ND	ND	ND
Hardness	mg/L	76	71	73	77	74

Borometer	Units		Effluent Con	ncentration ⁵		Calculated Receiving Water Concentration ⁵					Water Quality Criteria ⁶	
Parameter	Week 1	ar Junius F	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Average	A7	Chuania ⁷
		11/5/2024	11/12/2024	11/19/2024	11/26/2024	11/5/2024	11/12/2024	11/19/2024	11/26/2024	Average	Acute'	Chronic ⁷
Antimony ⁹	μg/L	ND	ND	ND	ND	***	***	***	***	***	***	640
Arsenic	μg/L	ND	ND	ND	ND	***	***	***	***	***	340	150
Cadmium	μg/L	ND	ND	ND	ND	***	***	***	***	***	0.94	0.43
Chromium ⁸	μg/L	ND	ND	ND	ND	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	***	***	***	***	***	30	1.2
Nickel	μg/L	5.7	5.9	5.5	5.0	0.1529	0.1629	0.1872	0.1702	0.1683	260	29
Selenium ⁹	μg/L	8.9	9.3	7.4	ND	0.3029	0.3165	0.2518	***	0.2178	***	5
Thallium ⁹	μg/L	ND	ND	ND	ND	***	***	***	***	***	***	0.47
Zinc	μg/L	ND	ND	ND	ND	***	***	***	***	***	65	65
Mercury	ng/L	4.3	0.6	4.3	2.6	0.1463	0.0191	0.1474	0.0885	0.1003	1400	12

- 1 Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
- 2 Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month.
- 3 ND = Not Detected (below the lab's reporting limit).
- 4 Turbidity and total residual chlorine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
- 5 Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations.
- 6 Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calcium carbonate) established for the receiving waterbody that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Waterbody (that will be protective of the designated use per Georgia EPD's rules and regulations.)
- Receiving Water Concentrations less than these criteria are protective of the waterbody.

 Acute (short-term) water quality criterion to be compared with the weekly calculated receiving water concentration; Chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
- 8 Numeric water quality criterion shown is for Hexavalent Chromium.
- 9 The numeric water quality criterion shown are the chronic (long-term) water quality criterion for antimony, selenium, and thallium since these parameters do not have an acute (short-term) water quality criterion.
- *** = Not Applicable
- $mgL = milligrams \ per \ liter = parts \ per \ million; \ \mu g/L = micrograms \ per \ liter = parts \ per \ million; \ ng/L = micrograms \ per \ liter = parts \ per \ million; \ SU = Standard \ Units; \ MGD = Million \ Gallons \ Day$

Plant Scherer Monthly Instream Results¹

Prepared by:

November 2024

		Ocmulgee River ²						
Parameter ³	Units	11/5/2024	11/5/2024	11/19/2024	11/19/2024			
		Upstream	Downstream	Upstream	Downstream			
рН	SU	7.1	7.1	7.1	7.2			
TSS	mg/L	ND^4	ND	ND	9.2			
O&G	mg/L	ND	ND	ND	ND			
TRC	mg/L	***	***	***	***			
Turbidity	NTU	2.3	6.5	2.3	4.3			
TDS	mg/L	64	77	111	89			
BOD	mg/L	ND	ND	ND	ND			
Antimony	μg/L	ND	ND	ND	ND			
Arsenic	μg/L	ND	ND	ND	ND			
Cadmium	μg/L	ND	ND	ND	ND			
Chromium	μg/L	ND	ND	ND	ND			
Copper	μg/L	ND	ND	ND	ND			
Lead	μg/L	ND	ND	ND	ND			
Mercury	ng/L	1.2	1.3	0.7	0.7			
Nickel	μg/L	ND	ND	ND	ND			
Selenium	μg/L	ND	ND	ND	ND			
Thallium	μg/L	ND	ND	ND	ND			
Zinc	μg/L	ND	ND	ND	ND			
Ammonia	mg/L	ND	ND	ND	ND			
TKN	mg/L	ND	ND	ND	ND			
Nitrate-Nitrite	mg/L	0.48	0.50	0.63	0.64			
Organic Nitrogen	mg/L	ND	ND	ND	ND			
Phosphorus	mg/L	ND	ND	ND	ND			
Ortho-phosphorus	mg/L	ND	ND	ND	ND			
Hardness	mg/L	24	26	28	29			

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Ocmulgee River measured 1000ft upstream and 1000ft downstream of the Final Plant Discharge (Outfall 001)
- 3 Metals results are total recoverable.
- 4 ND = Non-detect
- *** = Not Applicable

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = micrograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day