Georgia Power

Plant Scherer

Prepared by:

TŁ TETRA TECH

Monthly Dewatering Results¹

October 2024

		Efflu	ent Concent	ration	Permit Limits			
Parameter	Units	Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	3.29	4.47	***	***	***	
рН	SU	7.0	***	7.8	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ³	3.6	8.0	ND	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	ND	15.0	20.0	

Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Daily
i diameter	onita	10/1/2024	10/7/2024	10/15/2024	10/22/2024	10/29/2024	Average
Turbidity ⁴	NTU	5.1	4.3	4.8	4.4	5.2	4.8
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND	ND	ND
Total Dissolved Solids	mg/L	660	640	650	685	669	661
Ammonia	mg/L	ND	ND	ND	ND	ND	ND
Total Kjeldahl Nitrogen	mg/L	ND	ND	0.95	0.81	0.78	0.51
Nitrate-Nitrite	mg/L	ND	ND	ND	ND	ND	ND
Organic Nitrogen	mg/L	ND	ND	0.95	0.81	0.78	0.51
Phosphorus	mg/L	ND	ND	0.07	ND	ND	0.01
Ortho-Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand	mg/L	ND	3.8	ND	ND	ND	0.8
Hardness	mg/L	78	71	75	78	70	74

		Effluent Concentration ⁵					Calculated Receiving Water Concentration ⁵					Water Quality Criteria ⁶		
Parameter	Parameter Units	its Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	Acute ⁷	Chronic ⁷
		10/1/2024	10/7/2024	10/15/2024	10/22/2024	10/29/2024	10/1/2024	10/7/2024	10/15/2024	10/22/2024	10/29/2024			
Antimony ⁹	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	640
Arsenic	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	1.09	0.16
Chromium ⁸	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	32	1
Nickel	μg/L	5.5	5.4	5.6	5.4	5.7	0.1335	0.1575	0.1633	0.1307	0.1334	0.1437	274	30
Selenium ⁹	μg/L	8.2	8.6	7.9	7.5	8.9	0.2391	0.2508	0.2304	0.2187	0.2595	0.2397	***	5
Thallium ⁹	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	0.47
Zinc	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	68	69
Mercury	ng/L	3.3	3.2	3.4	4.2	4.0	0.0951	0.0945	0.0986	0.1210	0.1175	0.1053	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards. Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Arg is the arithmetic average of all daily values during the entire month. ND = Not Detected (below the lab's reporting limit). Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations on purchase the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are protocoded in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations on purchase the dissolved form. Constitution of a parameter (calculated at a default hardness of 50 mg/L as calculant calculated Receiving Water Concentration for an appropriate comparison to the numeric water quality criteria, Science Receiving Water Concentrations are are protective of the waterbody. Acute (short-term) water quality criterion to be compared with the weekly calculated receiving water concentration. Numeric water quality criterion to be compared with the weekly calculated receiving water concentration. The numeric water quality criterion hows in for Hazaviatent Chromium. The numeric water quality criterion shows are the chronic (long-term) water quality criterion to the average calculated receiving water concentration. * = NK Applicable 6

and regulations. Catcuatator recommends -7 Acute (short-term) water quality criterion shown is for Hexavalent Chromium. 8 Numeric water quality criterion shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony, selenium, and thallium since these parameters do not have an acute (short-term) 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony. 9 The numeric water quality criteria shown are the chronic (long-term) water quality criteria for antimony. 9 The

Plant Scherer

Prepared by:

TŁ

TETRA TECH

Monthly Instream Results¹

er

October 2024

		Ocmulgee River ²							
Parameter ³	Units	10/15/2024	10/15/2024	10/22/2024	10/22/2024				
		Upstream	Downstream	Upstream	Downstream				
pН	SU	6.9	6.9	7.3	7.1				
TSS	mg/L	ND^4	ND	ND	ND				
O&G	mg/L	ND	ND	ND	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	7.1	8.0	7.3	6.0				
TDS	mg/L	66	173	87	91				
BOD	mg/L	3.9	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	1.5	1.9	1.2	1.2				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	ND	ND				
TKN	mg/L	ND	ND	ND	ND				
Nitrate-Nitrite	mg/L	0.42	0.42	0.40	0.40				
Organic Nitrogen	mg/L	ND	ND	ND	ND				
Phosphorus	mg/L	ND	ND	ND	ND				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	21	20	22	23				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Ocmulgee River measured 1000ft upstream and 1000ft downstream of the Final Plant Discharge (Outfall 001)

3 Metals results are total recoverable.

4 ND = Non-detect

*** = Not Applicable

mg/L = milligrams per liter = parts per million; μg/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day